A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem
نویسندگان
چکیده
The genetic algorithm with search area adaptation (GSA) has a capacity for adapting to the structure of solution space and controlling the tradeoff balance between global and local searches, even if we do not adjust the parameters of the genetic algorithm (GA), such as crossover and/or mutation rates. But, GSA needs the crossover operator that has ability for characteristic inheritance ratio control. In this paper, we propose the modified genetic algorithm with search area adaptation (mGSA) for solving the Job-shop scheduling problem (JSP). Unlike GSA, our proposed method does not need such a crossover operator. To show the effectiveness of the proposed method, we conduct numerical experiments by using two benchmark problems. It is shown that this method has better performance than existing GAs. q 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
A New model for integrated lot sizing and scheduling in flexible job shop problem
In this paper an integrated lot-sizing and scheduling problem in a flexible job shop environment with machine-capacity-constraint is studied. The main objective is to minimize the total cost which includes the inventory costs, production costs and the costs of machine’s idle times. First, a new mixed integer programming model,with small bucket time approach,based onProportional Lot sizing and S...
متن کاملA Tabu Genetic algorithm with Search Area Adaptation for the Job-Shop Scheduling Problem
The job-shop scheduling problem is the important issues to the research of optimal problems. Besides, tabu search is also applied to GA, called TGA for traveling salesman problem (TSP) that has better effectiveness than GA. Thus, this is an interest and important research area for job-shop scheduling problem with TGA. In this paper, we try to discuss this issue. According to the TGA, it maintai...
متن کاملFlow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Industrial Engineering
دوره 48 شماره
صفحات -
تاریخ انتشار 2005